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Abstract. In this paper we obtain and discuss a class of slowly decaying oscillatory solutions of
the defocusing NLS. We also show that these solutions exhibit nonlinear interference, i.e. they can
be combined to obtain rather general profiles and wavepackets on an arbitrarily given interval.

In the last few years there have been several papers published [Matl, Mat2, Kov1, Kov2, Stal,
Beul] on a class of slowly decaying solutions of the Korteweg—de Vries (KdV) and sine—
Gordon equations. These solutions exhibit new, rather interesting properties that exponentially
decaying solutions do not possess. It seemed only natural to us to consider analogues of these
solutions for the nonlinear Sabdinger equation (NLS) [Abl1]
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It turns out that the method for computing such solutions does not work for the self-
focusing NLS ¢ = 1), so either the solutions do not exist or a different approach is required
to compute them. For the defocusing NLS=£ —1), however, the corresponding solutions
can be constructed as superpositions of slowly decaying singular solitons, which, by analogy
with the solutions of [Kov1], we call harmonic solitons. To actually compute such solutions
either the method of Darboux transform as developed by Matveev in [Mat3] or the method of
[Neul], could be employed. We use the latter.

To do the actual construction, we first recall that the NLS can be written as a compatibility
condition for:
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The formulae of [Neul] then give ussoliton solutions of the defocusing NLS in the form:
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are some constantg,< n.
Slowly decaying solitons appear whepvanish, in which case both the numerator and

the denominator of (2) are equal to zero. To solve that problem, we need to take the limit of
(2) asn; — 0, which yields:
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wherep; = e 0it*2%0 1 = —2i(p; — x — 4&;t), y;, &;, p; are some constantg,< n.
The (n + j)th row of (3) for either the numerator or denominator is obtained by subtracting
the jth row of (2) from the(n + j)th row of (2), dividing the result by; and taking its limit
as allp; — 0, while for simplicity’s sake we may assume thatigllare equal.
In the simplest case af = 1, (3) gives us
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which we call a single-harmonic soliton solution of the defocusing NLS.
An appropriate modification of the formulae of [Neul] also allows us to compute
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with 0 = 2n(x — p + 4¢§).
Applying (3) withn = 2 we obtain a two-harmonic soliton solution of the defocusing
NLS:
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Note that formulae (6) only make sense wl§ent &;. For &, = y1& + mmr, wherem
is an integer number, the concept of superposition of two harmonic solitons can be naturally
extended to the cage = &; by taking limit of (6) ass, — &;. This yields a harmonic soliton
with & = & = &, y = 31 = y» andp given by the equation
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For largep; we can neglect thgg—z(yzgz) term and that will give us
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Formulae (7) and (8) are exactly the same as the corresponding formulae for KdV [Kov1, Kov2]
and although it was expected for an approximate formula (8), the exact similarity of (7) to its
KdV counterpart was rather unexpected.

In a finite regionD = {x,t] |x| < X, 0 <t < T} with [p1], [p2l, Ipl > X, T, the first
and the second harmonic solitons are approximately waves of the form

exp(2i&x (&t + yi +x)) +O(i> k=12
Pk Pk
and, according to (8), their nonlinear superposition is also an oscillatory wave which is the
sum of the original harmonic solitons modulus lower-order terms, almost like the linear case.
This phenomenon resembles what is known in physics as interference, and was first
discussed in detail for KdV in [Kov2]. Just like the linear case, it should allow us to construct
miscellaneous wavepackets or profiles for the defocusing NLS. To do it we need to view (3) as
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Figure 1. The wavepacket generated by eight harmonic solitons=a0 with P = (p1, ..., pu),

pn = —68000 exXi3(hy — avg)?), T = (0,...,0), A = (A1, ..., Ag) andi, = 3+0.056(n — 1).
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Figure 2. The 13-harmonic soliton solutionat= Owith P = (pa, ..., p13), p» = —2.8n2 x 107,
=(0,...,0)andr = 0.17n.

a nonlinear analogue of the Fourier integral withplaying the role of the Fourier transform.

This analogy was employed in [Barl] to construct a number of wavepackets. Just like the
linear case, the wavepackets disperse with time, yet fer 0 they may be constructed to

have rather sharp profiles, three of which are given in the figures. Unlike the linear case when
wavepackets vanish or almost vanish everywhere outside of a certain interval, the wavepackets
for the defocusing NLS vanish or almost vanish outside of a certain inteatalithin a much

larger intervalwhich we call the interval of modulation.
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Figure 3. The 13-harmonic soliton solutionat= O with P = (py, ..., P13), pn = —2.8n2 x 107,

F=(%,...,%) andxr =0.17.
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